167 lines
5.8 KiB
Python
167 lines
5.8 KiB
Python
import os
|
|
import sys
|
|
import whisper
|
|
import json
|
|
import re
|
|
|
|
# model_name = "large-v3"
|
|
model_name = "medium"
|
|
|
|
def format_timestamp(seconds):
|
|
"""Format seconds into HH:MM:SS."""
|
|
hours = int(seconds // 3600)
|
|
minutes = int((seconds % 3600) // 60)
|
|
secs = int(seconds % 60)
|
|
if hours == 0:
|
|
return f"{minutes:02}:{secs:02}"
|
|
else:
|
|
return f"{hours:02}:{minutes:02}:{secs:02}"
|
|
|
|
def format_status_path(path):
|
|
"""Return a string with only the immediate parent folder and the filename."""
|
|
filename = os.path.basename(path)
|
|
parent = os.path.basename(os.path.dirname(path))
|
|
if parent:
|
|
return os.path.join(parent, filename)
|
|
return filename
|
|
|
|
def remove_lines_with_words(transcript):
|
|
"""Removes the last line from the transcript if any banned word is found in it."""
|
|
# Define banned words
|
|
banned_words = ["copyright", "ard", "zdf", "wdr"]
|
|
|
|
# Split transcript into lines
|
|
lines = transcript.rstrip().splitlines()
|
|
if not lines:
|
|
return transcript # Return unchanged if transcript is empty
|
|
|
|
# Check the last line
|
|
last_line = lines[-1]
|
|
if any(banned_word.lower() in last_line.lower() for banned_word in banned_words):
|
|
# Remove the last line if any banned word is present
|
|
lines = lines[:-1]
|
|
|
|
return "\n".join(lines)
|
|
|
|
def apply_error_correction(text):
|
|
# Load the JSON file that contains your error_correction
|
|
with open('error_correction.json', 'r', encoding='utf-8') as file:
|
|
correction_dict = json.load(file)
|
|
|
|
# Combine keys into a single regex pattern
|
|
pattern = r'\b(' + '|'.join(re.escape(key) for key in correction_dict.keys()) + r')\b'
|
|
|
|
def replacement_func(match):
|
|
key = match.group(0)
|
|
return correction_dict.get(key, key)
|
|
|
|
return re.sub(pattern, replacement_func, text)
|
|
|
|
def write_markdown(file_path, result, postfix=None):
|
|
file_dir = os.path.dirname(file_path)
|
|
txt_folder = os.path.join(file_dir, "Transkription")
|
|
os.makedirs(txt_folder, exist_ok=True)
|
|
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
if postfix != None:
|
|
base_name = f"{base_name}_{postfix}"
|
|
output_md = os.path.join(txt_folder, base_name + ".md")
|
|
|
|
# Prepare the markdown content.
|
|
folder_name = os.path.basename(file_dir)
|
|
md_lines = [
|
|
f"### {folder_name}",
|
|
f"#### {os.path.basename(file_path)}",
|
|
"---",
|
|
""
|
|
]
|
|
|
|
previous_text = ""
|
|
for segment in result["segments"]:
|
|
start = format_timestamp(segment["start"])
|
|
text = segment["text"].strip()
|
|
if previous_text != text: # suppress repeating lines
|
|
md_lines.append(f"`{start}` {text}")
|
|
previous_text = text
|
|
|
|
transcript_md = "\n".join(md_lines)
|
|
|
|
transcript_md = apply_error_correction(transcript_md)
|
|
|
|
transcript_md = remove_lines_with_words(transcript_md)
|
|
|
|
with open(output_md, "w", encoding="utf-8") as f:
|
|
f.write(transcript_md)
|
|
|
|
print(f"... done !")
|
|
|
|
def transcribe_file(model, audio_input, language):
|
|
initial_prompt = (
|
|
"Dieses Audio ist eine Aufnahme eines christlichen Gottesdienstes, "
|
|
"das biblische Zitate, religiöse Begriffe und typische Gottesdienst-Phrasen enthält. "
|
|
"Achte darauf auf folgende Begriffe, die häufig falsch transkribiert wurden, korrekt wiederzugeben: "
|
|
"Stiftshütte, Bundeslade, Heiligtum, Offenbarung, Evangelium, Buße, Golgatha, "
|
|
"Apostelgeschichte, Auferstehung, Wiedergeburt. "
|
|
"Das Wort 'Bethaus' wird häufig als synonym für 'Gebetshaus' verwendet. "
|
|
"Das Wort 'Abendmahl' ist wichtig und sollte zuverlässig erkannt werden. "
|
|
"Ebenso müssen biblische Namen und Persönlichkeiten exakt transkribiert werden. "
|
|
"Zahlenangaben, beispielsweise Psalmnummern oder Bibelverse, sollen numerisch dargestellt werden."
|
|
)
|
|
result = model.transcribe(audio_input, initial_prompt=initial_prompt, language=language)
|
|
return result
|
|
|
|
def detect_language(model, audio):
|
|
print(" Language detected: ", end='', flush=True)
|
|
audio = whisper.pad_or_trim(audio)
|
|
mel = whisper.log_mel_spectrogram(audio, n_mels=model.dims.n_mels).to(model.device)
|
|
_, probs = model.detect_language(mel)
|
|
lang_code = max(probs, key=probs.get)
|
|
print(f"{lang_code}. ", end='', flush=True)
|
|
return lang_code
|
|
|
|
def process_file(file_path, model, audio_input, language=None, postfix=None):
|
|
|
|
if language == None:
|
|
language = detect_language(model, audio_input)
|
|
|
|
print(f"Transcribing {format_status_path(file_path)}, lang={language} ", end='', flush=True)
|
|
markdown = transcribe_file(model, audio_input, language)
|
|
write_markdown(file_path, markdown, postfix)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Folder where your audio/video files are stored
|
|
input_folder = "transcribe_single"
|
|
|
|
# Check if folder exists
|
|
if not os.path.isdir(input_folder):
|
|
print(f"Error: Folder '{input_folder}' not found.")
|
|
sys.exit(1)
|
|
|
|
# List all supported file types
|
|
supported_ext = (".mp3", ".wav", ".m4a", ".mp4", ".mov", ".flac", ".ogg")
|
|
files = [
|
|
os.path.join(input_folder, f)
|
|
for f in os.listdir(input_folder)
|
|
if f.lower().endswith(supported_ext)
|
|
]
|
|
|
|
if not files:
|
|
print(f"No audio/video files found in '{input_folder}'.")
|
|
sys.exit(1)
|
|
|
|
print(f"Found {len(files)} file(s) in '{input_folder}':")
|
|
for f in files:
|
|
print(f" - {f}")
|
|
|
|
print("\nLoading Whisper model...")
|
|
model = whisper.load_model(model_name, device="cuda") # or "cpu" if no GPU
|
|
|
|
# Process each file one by one
|
|
for file_path in files:
|
|
try:
|
|
audio = whisper.load_audio(file_path)
|
|
process_file(file_path, model, audio, "de") # or None to auto-detect language
|
|
except Exception as e:
|
|
print(f"Error processing {file_path}: {e}")
|
|
|