253 lines
9.7 KiB
Python
Executable File
253 lines
9.7 KiB
Python
Executable File
import os
|
|
import sys
|
|
import time
|
|
import whisper
|
|
import concurrent.futures
|
|
import json
|
|
import re
|
|
|
|
# model_name = "large-v3"
|
|
model_name = "medium"
|
|
|
|
# start time for transcription statistics
|
|
start_time = 0
|
|
total_audio_length = 0
|
|
|
|
folder_list = [
|
|
# Speyer
|
|
# "\\\\10.1.0.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2025",
|
|
# "\\\\10.1.0.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2016",
|
|
# "\\\\10.1.0.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2015",
|
|
# "\\\\10.1.0.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2014",
|
|
|
|
# Schwegenheim
|
|
"\\\\10.1.1.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2025",
|
|
"\\\\10.1.1.11\\Aufnahme-stereo\\010 Gottesdienste ARCHIV\\2024"
|
|
]
|
|
|
|
def format_timestamp(seconds):
|
|
"""Format seconds into HH:MM:SS."""
|
|
hours = int(seconds // 3600)
|
|
minutes = int((seconds % 3600) // 60)
|
|
secs = int(seconds % 60)
|
|
if hours == 0:
|
|
return f"{minutes:02}:{secs:02}"
|
|
else:
|
|
return f"{hours:02}:{minutes:02}:{secs:02}"
|
|
|
|
def format_status_path(path):
|
|
"""Return a string with only the immediate parent folder and the filename."""
|
|
filename = os.path.basename(path)
|
|
parent = os.path.basename(os.path.dirname(path))
|
|
if parent:
|
|
return os.path.join(parent, filename)
|
|
return filename
|
|
|
|
def remove_lines_with_words(transcript):
|
|
"""Removes the last line from the transcript if any banned word is found in it."""
|
|
# Define banned words
|
|
banned_words = ["copyright", "ard", "zdf", "wdr"]
|
|
|
|
# Split transcript into lines
|
|
lines = transcript.rstrip().splitlines()
|
|
if not lines:
|
|
return transcript # Return unchanged if transcript is empty
|
|
|
|
# Check the last line
|
|
last_line = lines[-1]
|
|
if any(banned_word.lower() in last_line.lower() for banned_word in banned_words):
|
|
# Remove the last line if any banned word is present
|
|
lines = lines[:-1]
|
|
|
|
return "\n".join(lines)
|
|
|
|
def apply_error_correction(text):
|
|
# Load the JSON file that contains your error_correction
|
|
with open('error_correction.json', 'r', encoding='utf-8') as file:
|
|
correction_dict = json.load(file)
|
|
|
|
# Combine keys into a single regex pattern
|
|
pattern = r'\b(' + '|'.join(re.escape(key) for key in correction_dict.keys()) + r')\b'
|
|
|
|
def replacement_func(match):
|
|
key = match.group(0)
|
|
return correction_dict.get(key, key)
|
|
|
|
return re.sub(pattern, replacement_func, text)
|
|
|
|
def print_speed(current_length):
|
|
global start_time
|
|
global total_audio_length
|
|
# Calculate transcription time statistics
|
|
elapsed_time = time.time() - start_time
|
|
|
|
total_audio_length = total_audio_length + current_length
|
|
|
|
# Calculate transcription speed: minutes of audio transcribed per hour of processing.
|
|
# Formula: (audio duration in minutes) / (elapsed time in hours)
|
|
if elapsed_time > 0:
|
|
trans_speed = (total_audio_length / 60) / (elapsed_time / 3600)
|
|
else:
|
|
trans_speed = 0
|
|
|
|
print(f" | Speed: {int(trans_speed)} minutes per hour | ", end='', flush=True)
|
|
|
|
def write_markdown(file_path, result, postfix=None):
|
|
file_dir = os.path.dirname(file_path)
|
|
txt_folder = os.path.join(file_dir, "Transkription")
|
|
os.makedirs(txt_folder, exist_ok=True)
|
|
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
if postfix != None:
|
|
base_name = f"{base_name}_{postfix}"
|
|
output_md = os.path.join(txt_folder, base_name + ".md")
|
|
|
|
# Prepare the markdown content.
|
|
folder_name = os.path.basename(file_dir)
|
|
md_lines = [
|
|
f"### {folder_name}",
|
|
f"#### {os.path.basename(file_path)}",
|
|
"---",
|
|
""
|
|
]
|
|
|
|
previous_text = ""
|
|
for segment in result["segments"]:
|
|
start = format_timestamp(segment["start"])
|
|
text = segment["text"].strip()
|
|
if previous_text != text: # suppress repeating lines
|
|
md_lines.append(f"`{start}` {text}")
|
|
previous_text = text
|
|
|
|
transcript_md = "\n".join(md_lines)
|
|
|
|
transcript_md = apply_error_correction(transcript_md)
|
|
|
|
transcript_md = remove_lines_with_words(transcript_md)
|
|
|
|
with open(output_md, "w", encoding="utf-8") as f:
|
|
f.write(transcript_md)
|
|
|
|
print_speed(result["segments"][-1]["end"])
|
|
print(f"... done !")
|
|
|
|
def transcribe_file(model, audio_input, language):
|
|
initial_prompt = (
|
|
"Dieses Audio ist eine Aufnahme eines christlichen Gottesdienstes, "
|
|
"das biblische Zitate, religiöse Begriffe und typische Gottesdienst-Phrasen enthält. "
|
|
"Achte darauf auf folgende Begriffe, die häufig falsch transkribiert wurden, korrekt wiederzugeben: "
|
|
"Stiftshütte, Bundeslade, Heiligtum, Offenbarung, Evangelium, Buße, Golgatha, "
|
|
"Apostelgeschichte, Auferstehung, Wiedergeburt. "
|
|
"Das Wort 'Bethaus' wird häufig als synonym für 'Gebetshaus' verwendet. "
|
|
"Das Wort 'Abendmahl' ist wichtig und sollte zuverlässig erkannt werden. "
|
|
"Ebenso müssen biblische Namen und Persönlichkeiten exakt transkribiert werden. "
|
|
"Zahlenangaben, beispielsweise Psalmnummern oder Bibelverse, sollen numerisch dargestellt werden."
|
|
)
|
|
result = model.transcribe(audio_input, initial_prompt=initial_prompt, language=language)
|
|
return result
|
|
|
|
def detect_language(model, audio):
|
|
print(" Language detected: ", end='', flush=True)
|
|
audio = whisper.pad_or_trim(audio)
|
|
mel = whisper.log_mel_spectrogram(audio, n_mels=model.dims.n_mels).to(model.device)
|
|
_, probs = model.detect_language(mel)
|
|
lang_code = max(probs, key=probs.get)
|
|
print(f"{lang_code}. ", end='', flush=True)
|
|
return lang_code
|
|
|
|
def process_file(file_path, model, audio_input):
|
|
file_name = os.path.basename(file_path)
|
|
|
|
# default values
|
|
postfix = None
|
|
language = detect_language(model, audio_input)
|
|
|
|
if language == 'ru' and 'predigt' in file_name.lower() or language == 'de' and 'russisch' in file_name.lower(): # make two files
|
|
# first file
|
|
language="ru"
|
|
postfix = "ru"
|
|
print(f"Transcribing {format_status_path(file_path)} ", end='', flush=True)
|
|
markdown = transcribe_file(model, audio_input, language)
|
|
write_markdown(file_path, markdown, postfix)
|
|
# second file
|
|
language="de"
|
|
postfix = "de"
|
|
elif language == 'en': # songs mostly detect as english
|
|
language="de"
|
|
elif language == 'de' or language == 'ru': # keep as detected
|
|
pass
|
|
else: # not german not english and not russian. --> russina
|
|
language="ru"
|
|
|
|
print(f"Transcribing {format_status_path(file_path)} ", end='', flush=True)
|
|
markdown = transcribe_file(model, audio_input, language)
|
|
write_markdown(file_path, markdown, postfix)
|
|
|
|
def process_folder(root_folder):
|
|
"""
|
|
Walk through root_folder and process .mp3 files, applying skip rules.
|
|
Only files that need to be transcribed (i.e. transcription does not already exist)
|
|
will have their audio pre-loaded concurrently.
|
|
"""
|
|
global start_time
|
|
keywords = ["musik", "chor", "lied", "gesang", "orchester", "orhester", "melodi", "sot"]
|
|
print("Create file list...")
|
|
|
|
valid_files = []
|
|
checked_files = 0
|
|
# Walk the folder and build a list of files to transcribe.
|
|
for dirpath, _, filenames in os.walk(root_folder):
|
|
for filename in filenames:
|
|
if filename.lower().endswith(".mp3"):
|
|
checked_files = checked_files + 1
|
|
filename_lower = filename.lower()
|
|
file_path = os.path.join(dirpath, filename)
|
|
# Skip files with skip keywords.
|
|
if "vorwort" not in filename_lower and any(keyword in filename_lower for keyword in keywords):
|
|
continue
|
|
|
|
# Compute expected output markdown path.
|
|
txt_folder = os.path.join(dirpath, "Transkription")
|
|
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
output_md = os.path.join(txt_folder, base_name + ".md")
|
|
output_md_de = os.path.join(txt_folder, base_name + "_de.md")
|
|
output_md_ru = os.path.join(txt_folder, base_name + "_ru.md")
|
|
# skip files with existing md files
|
|
if os.path.exists(output_md) or os.path.exists(output_md_de) or os.path.exists(output_md_ru):
|
|
continue
|
|
|
|
valid_files.append(file_path)
|
|
|
|
if len(valid_files) == 0:
|
|
print(f"Checked {checked_files} files. All files are transcribed.")
|
|
return
|
|
else:
|
|
print(f"Checked {checked_files} files. Start to transcribe {len(valid_files)} files.")
|
|
|
|
print("Loading Whisper model...")
|
|
model = whisper.load_model(model_name, device="cuda")
|
|
|
|
# Use a thread pool to pre-load files concurrently.
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
# Pre-load the first file.
|
|
print("Initialize preloading process...")
|
|
future_audio = executor.submit(whisper.load_audio, valid_files[0])
|
|
# Wait for the first file to be loaded.
|
|
preloaded_audio = future_audio.result()
|
|
# Record start time for transcription statistics
|
|
start_time = time.time()
|
|
|
|
for i, file_path in enumerate(valid_files):
|
|
preloaded_audio = future_audio.result()
|
|
# Start loading the next file concurrently.
|
|
if i + 1 < len(valid_files):
|
|
future_audio = executor.submit(whisper.load_audio, valid_files[i + 1])
|
|
try: # continue with next file if a file fails
|
|
process_file(file_path, model, preloaded_audio)
|
|
except Exception as e:
|
|
print(f"Error with file {file_path}")
|
|
print(e)
|
|
|
|
if __name__ == "__main__":
|
|
for folder in folder_list:
|
|
process_folder(folder)
|
|
print("All done!") |