add single file transcription

This commit is contained in:
lelo 2025-03-23 21:12:33 +01:00
parent 99a74cbc58
commit 276d49ac53

141
transcribe_single_file.py Normal file
View File

@ -0,0 +1,141 @@
import os
import sys
import whisper
import json
import re
# model_name = "large-v3"
model_name = "medium"
def format_timestamp(seconds):
"""Format seconds into HH:MM:SS."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
if hours == 0:
return f"{minutes:02}:{secs:02}"
else:
return f"{hours:02}:{minutes:02}:{secs:02}"
def format_status_path(path):
"""Return a string with only the immediate parent folder and the filename."""
filename = os.path.basename(path)
parent = os.path.basename(os.path.dirname(path))
if parent:
return os.path.join(parent, filename)
return filename
def remove_lines_with_words(transcript):
"""Removes the last line from the transcript if any banned word is found in it."""
# Define banned words
banned_words = ["copyright", "ard", "zdf", "wdr"]
# Split transcript into lines
lines = transcript.rstrip().splitlines()
if not lines:
return transcript # Return unchanged if transcript is empty
# Check the last line
last_line = lines[-1]
if any(banned_word.lower() in last_line.lower() for banned_word in banned_words):
# Remove the last line if any banned word is present
lines = lines[:-1]
return "\n".join(lines)
def apply_error_correction(text):
# Load the JSON file that contains your error_correction
with open('error_correction.json', 'r', encoding='utf-8') as file:
correction_dict = json.load(file)
# Combine keys into a single regex pattern
pattern = r'\b(' + '|'.join(re.escape(key) for key in correction_dict.keys()) + r')\b'
def replacement_func(match):
key = match.group(0)
return correction_dict.get(key, key)
return re.sub(pattern, replacement_func, text)
def write_markdown(file_path, result, postfix=None):
file_dir = os.path.dirname(file_path)
txt_folder = os.path.join(file_dir, "Transkription")
os.makedirs(txt_folder, exist_ok=True)
base_name = os.path.splitext(os.path.basename(file_path))[0]
if postfix != None:
base_name = f"{base_name}_{postfix}"
output_md = os.path.join(txt_folder, base_name + ".md")
# Prepare the markdown content.
folder_name = os.path.basename(file_dir)
md_lines = [
f"### {folder_name}",
f"#### {os.path.basename(file_path)}",
"---",
""
]
previous_text = ""
for segment in result["segments"]:
start = format_timestamp(segment["start"])
text = segment["text"].strip()
if previous_text != text: # suppress repeating lines
md_lines.append(f"`{start}` {text}")
previous_text = text
transcript_md = "\n".join(md_lines)
transcript_md = apply_error_correction(transcript_md)
transcript_md = remove_lines_with_words(transcript_md)
with open(output_md, "w", encoding="utf-8") as f:
f.write(transcript_md)
print(f"... done !")
def transcribe_file(model, audio_input, language):
initial_prompt = (
"Dieses Audio ist eine Aufnahme eines christlichen Gottesdienstes, "
"das biblische Zitate, religiöse Begriffe und typische Gottesdienst-Phrasen enthält. "
"Achte darauf auf folgende Begriffe, die häufig falsch transkribiert wurden, korrekt wiederzugeben: "
"Stiftshütte, Bundeslade, Heiligtum, Offenbarung, Evangelium, Buße, Golgatha, "
"Apostelgeschichte, Auferstehung, Wiedergeburt. "
"Das Wort 'Bethaus' wird häufig als synonym für 'Gebetshaus' verwendet. "
"Das Wort 'Abendmahl' ist wichtig und sollte zuverlässig erkannt werden. "
"Ebenso müssen biblische Namen und Persönlichkeiten exakt transkribiert werden. "
"Zahlenangaben, beispielsweise Psalmnummern oder Bibelverse, sollen numerisch dargestellt werden."
)
result = model.transcribe(audio_input, initial_prompt=initial_prompt, language=language)
return result
def detect_language(model, audio):
print(" Language detected: ", end='', flush=True)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio, n_mels=model.dims.n_mels).to(model.device)
_, probs = model.detect_language(mel)
lang_code = max(probs, key=probs.get)
print(f"{lang_code}. ", end='', flush=True)
return lang_code
def process_file(file_path, model, audio_input, language=None, postfix=None):
if language == None:
language = detect_language(model, audio_input)
print(f"Transcribing {format_status_path(file_path)}, lang={language} ", end='', flush=True)
markdown = transcribe_file(model, audio_input, language)
write_markdown(file_path, markdown, postfix)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python transcribe_all.py <file>")
sys.exit(1)
file_name_path = sys.argv[1]
print("Loading Whisper model...")
model = whisper.load_model(model_name, device="cuda")
audio = whisper.load_audio(file_name_path)
process_file(file_name_path, model, audio, "de")